http://www.sciencedaily.com/releases/2007/06/070603225026.htm
http://www.unews.utah.edu/p/?r=053007-1
2007.06.04
"我們能以一種簡單有效的方式,透過聲音,將廢熱轉換成電流," Orest Symko 說,猶他大學的物理教授,他領導此一研究。"這是來自於廢熱的再生能源新來源。"
Symko 五名博士生最近設計出新方法來改善聲熱引擎(acoustic heat-engine)裝置的效能,將熱轉換成電力。他們將於六月八日週五,於ASA 在希爾頓鹽湖城中心飯店所舉行的年會當中演示他們的發現。
Symko 計畫在一年內測試這個裝置,以一處軍方雷達設施與該大學的熱水產生廠的廢熱製造電力。
該研究由美軍贊助,他們對於 "雷達廢熱的處理,並生產可攜式電能,讓你在戰場中使電子設備," 頗感興趣,他說。
Symko 預期該裝置能在二年內成為太陽能電池的替代品。此熱引擎也能用來冷卻筆記型電腦與其他電腦,這些東西當它們愈趨複雜時,會產生更多熱能。Symko 也預測核電廠也使用該裝置,自冷卻塔釋出的熱能中產生電力。
如何從熱與聲音當中取得電力?
Symko 透過聲音讓熱轉換成電力的研究起源於他目前進行中的研究,他要開發熱聲(thermoacoustic)冰箱來冷卻電子裝置。
在 2005 年他開始一個為期五年的熱--聲--電轉換研究計畫,名為 Thermal Acoustic Piezo Energy Conversion (TAPEC,熱聲壓能源轉換)。Symko 與來自於華盛頓州立大學與密西西比大學的同僚一起工作。
此計畫在過去二年內接收 200 萬美元的資金,而 Symko 希望當熱--聲--電裝置縮的更小時資金能夠增加,讓他們能將與微機械(即 MEMS)結合,用來冷卻電腦與其他電子裝置,例如:擴大器。
使用聲音將熱轉換成電力有兩個關鍵步驟。Symko 與同事開發出不同樣式的新型熱引擎(技術上稱為 "thermoacoustic prime movers,熱聲原始動力"),以完成第一步:將熱轉換成聲音。
接著,他們使用現存的技術將聲音轉換成電流:"piezoelectric(壓電)" 裝置,會對壓力的擠壓產生回應,包括聲波,並將壓力轉換成電流。"Piezo" 表示壓力或是擠壓。
Symko 實驗室中所製造出來的大部分熱轉電力聲學裝置,都是裝載在圓柱體的共振器(resonators)當中,那可以放在你的手上。每一個圓柱體,或共振器,包含了一疊表面積很大的物質 -- 例如金屬或塑膠板,或是玻璃纖維,棉花或鋼絲絨 -- 那放置在冷卻熱交換器(cold heat exchanger)與加溫熱(hot heat)交換器之間。
當熱被施加時 -- 經由導火線(matches),一個小型發焰裝置或電熱元件 -- 熱會創造出一個門檻。接著變熱且移動中的空氣會產生單一頻率的聲音,類似吹入長笛中的空氣。
"你有熱,那如此地混亂、無秩序,接著你在一瞬間,你有單一頻率的聲音出現, Symko 說。
接著,聲波會擠壓壓電裝置,產生電壓。Symko 說那類似你手肘中的神經撞到東西時,產生疼痛的電神經脈衝時所發生的事。較長的共振器圓柱體產生較低的音調,較短則會較高。
能夠將熱轉換成聲音接著是電流的裝置缺乏可動部件。所以這種裝置幾乎不需要維護,而且很經久耐用。它們不需要建造的如同,例如:引擎中的活塞那樣精準,引擎活塞若磨損時效率會降低。
Symko 說,該裝置不會製造噪音汙染。首先,當較小的裝置被開發,它們會將熱轉換成超音波,人們無法聽到。其次,音量在轉換成電力時會變小。最後,"可以很容易地在裝置四周放置聲音吸收器以阻絕噪音," 他說。
學生改進熱聲轉換成電力的效率
下面是 Symko 的博士生所進行研究的摘要:
-- Student Bonnie McLaughlin showed it was possible to double the efficiency of converting heat into sound by optimizing the geometry and insulation of the acoustic resonator and by injecting heat directly into the hot heat exchanger.(透過改進共振器形狀與直接將熱注入加溫熱交換器當中,使轉換效率倍增。)
She built cylindrical devices 1.5 inches long and a half-inch wide, and worked to improve how much heat was converted to sound rather than escaping. As little as a 90-degree Fahrenheit
temperature difference between hot and cold heat exchangers produced sound. Some devices produced sound at 135 decibels -- as loud as a jackhammer.
-- Student Nick Webb showed that by pressurizing the air in a similar-sized resonator, it was able to produce more sound, and thus more electricity.(在尺寸較小的共振器當中對空氣施壓,可以產生更多聲音,也因此更多電力。)
He also showed that by increasing air pressure, a smaller temperature difference between heat exchangers is needed for heat to begin converting into sound. That makes it practical to use
the acoustic devices to cool laptop computers and other electronics that emit relatively small amounts of waste heat, Symko says.
-- Numerous heat-to-sound-to-electricity devices will be needed to harness solar power or to cool large, industrial sources of waste heat. Student Brenna Gillman learned how to get the devices
-- mounted together to form an array -- to work together.(創造出能夠產生相同頻率,且同步振動的轉換陣列以符合業界大規模的需求。)
For an array to efficiently convert heat to sound and electricity, its individual devices must be "coupled" to produce the same frequency of sound and vibrate in sync.
Gillman used various metals to build supports to hold five of the devices at once. She found the devices could be synchronized if a support was made of a less dense metal such as aluminum and, more important, if the ratio of the support's weight to the array's total weight fell within a specific range. The devices could be synchronized even better if they were "coupled" when their sound waves interacted in an air cavity in the support.
-- Student Ivan Rodriguez used a different approach in building an acoustic device to convert heat to electricity. Instead of a cylinder, he built a resonator from a quarter-inch-diameter
hollow steel tube bent to form a ring about 1.3 inches across.(以中空鋼管折成直徑 1.3 吋的環狀聲音產生裝置,可避免共振器產生反射,且效率加倍。)
In cylinder-shaped resonators, sound waves bounce against the ends of the cylinder. But when heat is applied to Rodriguez's ring-shaped resonator, sound waves keep circling through the
device with nothing to reflect them.
Symko says the ring-shaped device is twice as efficient as cylindrical devices in converting heat into sound and electricity. That is because the pressure and speed of air in the ring-shaped device are always in sync, unlike in cylinder-shaped devices.
-- Student Myra Flitcroft designed a cylinder-shaped heat engine one-third the size of the other devices. It is less than half as wide as a penny, producing a much higher pitch than the other
resonators. When heated, the device generated sound at 120 decibels -- the level produced by a siren or a rock concert.(製造出只有其他裝置 1/3 大的圓柱狀共振器,聲音可高達 120 分貝。)
※ 相關報導:
* Dr. Orest Symko
http://www.physics.utah.edu/~woolf/acoustics/bio.html
* The Temperature of Sound - Feature
http://media.www.dailyutahchronicle.com/media/storage/paper244/news/2001/03/02/Feature/The-Temperature.Of.Sound-39300.shtml
* SHPEGS - 太陽能熱泵發電系統
* 效率達 40% 的太陽能電池
* 寄生發電機:一邊運動一邊發電?
* 奈米發電機提供連續不斷的電力
* 印度將生產『零污染』的 Air Car
* 零汙染氫氣車 不是夢
* 二氧化碳空氣捕獲技術首度示範成功